206 research outputs found

    Designing Incentives Enabled Decentralized User Data Sharing Framework

    Get PDF
    Data sharing practices are much needed to strike a balance between user privacy, user experience, and profit. Different parties collect user data, for example, companies offering apps, social networking sites, and others, whose primary motive is an enhanced business model while giving optimal services to the end-users. However, the collection of user data is associated with serious privacy and security issues. The sharing platform also needs an effective incentive mechanism to realize transparent access to the user data while distributing fair incentives. The emerging literature on the topic includes decentralized data sharing approaches. However, there has been no universal method to track who shared what, to whom, when, for what purpose and under what condition in a verifiable manner until recently, when the distributed ledger technologies emerged to become the most effective means for designing a decentralized peer-to-peer network. This Ph.D. research includes an engineering approach for specifying the operations for designing incentives and user-controlled data-sharing platforms. The thesis presents a series of empirical studies and proposes novel blockchains- and smart contracts-based DUDS (Decentralized User Data Sharing) framework conceptualizing user-controlled data sharing practices. The DUDS framework supports immutability, authenticity, enhanced security, trusted records and is a promising means to share user data in various domains, including among researchers, customer data in e-commerce, tourism applications, etc. The DUDS framework is evaluated via performance analyses and user studies. The extended Technology Acceptance Model and a Trust-Privacy-Security Model are used to evaluate the usability of the DUDS framework. The evaluation allows uncovering the role of different factors affecting user intention to adopt data-sharing platforms. The results of the evaluation point to guidelines and methods for embedding privacy, user transparency, control, and incentives from the start in the design of a data-sharing framework to provide a platform that users can trust to protect their data while allowing them to control it and share it in the ways they want

    Student Certificate Sharing System Using Blockchain and NFTs

    Full text link
    In this paper, we propose a certificate sharing system based on blockchain that gives students authority and control over their academic certificates. Our strategy involves developing blockchain-based NFT certifications that can be shared with institutions or employers using blockchain addresses. Students may access the data created by each individual institute in a single platform, filter the view of the relevant courses according to their requirements, and mint their certificate metadata as NFTs. This method provides accountability of access, comprehensive records that are permanently maintained in IPFS, and verifiable provenance for creating, distributing, and accessing certificates. It also makes it possible to share certificates more safely and efficiently. By incorporating trust factors through data provenance, our system provides a countermeasure against issues such as fake and duplicate certificates. It addresses the challenge of the traditional certificate verification processes, which are lengthy manual process. With this system, students can manage and validate their academic credentials from multiple institutions in one location while ensuring authenticity and confidentiality using digital signatures and hashing for data protection against unauthorized access. Overall, our suggested system ensures data safety, accountability, and confidentiality while offering a novel approach to certificate distribution

    Performance Enhancement of Radial Distribution System via Network Reconfiguration: A Case Study of Urban City in Nepal

    Get PDF
    Increasing unplanned energy demand increase has led to network congestion, increases power losses and poor voltage profile. To decrease these effects of an unmanaged power system, distribution network reconfiguration provides an effective solution. This paper deals with improving the power losses and poor voltage profile of the Phulchowk Distribution and Consumer Services (DCS) via the implementation of an optimum reconfiguration approach. A Genetic Algorithm (GA) is developed for the optimization. Further, it tries to answer to what extent can we improve the distribution system without overhauling the entire network. The developed simulation algorithm is firstly put into work on the IEEE 33 bus system to better its voltage profile and the poor power losses. The effectiveness of the developed system is validated as it reduced the voltage drop by 5.66% and the power loss by 25.96%. With the solution validated, the algorithm is further implemented in the case of Pulchowk DCS. After reconfiguring the system in different individual cases, optimum network reconfiguration is selected that improved the voltage profile by 3.85%, and the active and reactive power losses by 44.29% and 45.54% respectively from the base case scenario

    Enhancing Scalability and Reliability in Semi-Decentralized Federated Learning With Blockchain: Trust Penalization and Asynchronous Functionality

    Full text link
    The paper presents an innovative approach to address the challenges of scalability and reliability in Distributed Federated Learning by leveraging the integration of blockchain technology. The paper focuses on enhancing the trustworthiness of participating nodes through a trust penalization mechanism while also enabling asynchronous functionality for efficient and robust model updates. By combining Semi-Decentralized Federated Learning with Blockchain (SDFL-B), the proposed system aims to create a fair, secure and transparent environment for collaborative machine learning without compromising data privacy. The research presents a comprehensive system architecture, methodologies, experimental results, and discussions that demonstrate the advantages of this novel approach in fostering scalable and reliable SDFL-B systems.Comment: To appear in 2023 IEEE Ubiquitous Computing, Electronics & Mobile Communication Conference (IEEE UEMCON
    • …
    corecore